That’s just clutter for no good reason when we can just say if it doesn’t have parentheses it’s left to right. Having a default evaluation order makes sense and means we only need parentheses when we want to deviate from the norm.
You’re literally arguing nothing right now. THEY took the position we should have brackets defining the order in every single equation or otherwise have them as undefined TODAY. It doesn’t matter when they were invented. Obviously it’s never been written like that. They are the one arguing it SHOULD BE. I said that would be stupid vs following the left to right convention already established. You’re getting caught up in the semantics of the wording.
What you inferred: they’re saying brackets were always around and we chose left to right to avoid bracket mess.
What I was actually saying: we chose and continue to choose to keep using the left to right convention over brackets everywhere because it would be unnecessary and make things more cluttered.
And yes, that IS a position mathematicians COULD have chosen once brackets WERE invented. They could have decided we should use them in every equation for absolute clarity of order. Saying we should not do that based on tradition alone is a bad reason.
The “always been the case” argument could justify any legacy system. We don’t still use Roman numerals for arithmetic just because they were traditional. Things DO change.
Ancient Greeks and Romans strongly resisted zero as a concept, viewing it as philosophically problematic. Negative numbers were even more controversial with many mathematicians into the Renaissance calling them “fictitious” or “absurd numbers.” It took centuries for these to become accepted as legitimate mathematical objects.
Before Robert Recorde introduced “=” in 1557, mathematicians wrote out “is equal to” in words. Even after its introduction, many resisted it for decades, preferring verbal descriptions or other symbols.
I could go on but if you’re going to argue why something shouldn’t be the case, you should argue more than “it’s tradition” or “we’ve done fine without it so far”. Because they did fine with many things in mathematics until they decided they needed to change or expand it.
It’s so we don’t have to spam brackets everywhere
9+2-1+6-4+7-3+5=
Becomes
((((((9+2)-1)+6)-4)+7)-3)+5=
That’s just clutter for no good reason when we can just say if it doesn’t have parentheses it’s left to right. Having a default evaluation order makes sense and means we only need parentheses when we want to deviate from the norm.
No it isn’t. The order of operations rules were around for several centuries before we even started using Brackets in Maths.
It was literally never written like that
That has always been the case
You’re literally arguing nothing right now. THEY took the position we should have brackets defining the order in every single equation or otherwise have them as undefined TODAY. It doesn’t matter when they were invented. Obviously it’s never been written like that. They are the one arguing it SHOULD BE. I said that would be stupid vs following the left to right convention already established. You’re getting caught up in the semantics of the wording.
What you inferred: they’re saying brackets were always around and we chose left to right to avoid bracket mess.
What I was actually saying: we chose and continue to choose to keep using the left to right convention over brackets everywhere because it would be unnecessary and make things more cluttered.
And yes, that IS a position mathematicians COULD have chosen once brackets WERE invented. They could have decided we should use them in every equation for absolute clarity of order. Saying we should not do that based on tradition alone is a bad reason.
The “always been the case” argument could justify any legacy system. We don’t still use Roman numerals for arithmetic just because they were traditional. Things DO change.
Ancient Greeks and Romans strongly resisted zero as a concept, viewing it as philosophically problematic. Negative numbers were even more controversial with many mathematicians into the Renaissance calling them “fictitious” or “absurd numbers.” It took centuries for these to become accepted as legitimate mathematical objects.
Before Robert Recorde introduced “=” in 1557, mathematicians wrote out “is equal to” in words. Even after its introduction, many resisted it for decades, preferring verbal descriptions or other symbols.
I could go on but if you’re going to argue why something shouldn’t be the case, you should argue more than “it’s tradition” or “we’ve done fine without it so far”. Because they did fine with many things in mathematics until they decided they needed to change or expand it.