𝙲𝚑𝚊𝚒𝚛𝚖𝚊𝚗 𝙼𝚎𝚘𝚠

  • 0 Posts
  • 156 Comments
Joined 1 year ago
cake
Cake day: August 16th, 2023

help-circle

















  • If producing an AGI is intractable, why does the human meat-brain exist?

    Ah, but here we have to get pedantic a little bit: producing an AGI through current known methods is intractable.

    The human brain is extremely complex and we still don’t fully know how it works. We don’t know if the way we learn is really analogous to how these AIs learn. We don’t really know if the way we think is analogous to how computers “think”.

    There’s also another argument to be made, that an AGI that matches the currently agreed upon definition is impossible. And I mean that in the broadest sense, e.g. humans don’t fit the definition either. If that’s true, then an AI could perhaps be trained in a tractable amount of time, but this would upend our understanding of human consciousness (perhaps justifyingly so). Maybe we’re overestimating how special we are.

    And then there’s the argument that you already mentioned: it is intractable, but 60 million years, spread over trillions of creatures is long enough. That also suggests that AGI is really hard, and that creating one really isn’t “around the corner” as some enthusiasts claim. For any practical AGI we’d have to finish training in maybe a couple years, not millions of years.

    And maybe we develop some quantum computing breakthrough that gets us where we need to be. Who knows?


  • This is a gross misrepresentation of the study.

    That’s as shortsighted as the “I think there is a world market for maybe five computers” quote, or the worry that NYC would be buried under mountains of horse poop before cars were invented.

    That’s not their argument. They’re saying that they can prove that machine learning cannot lead to AGI in the foreseeable future.

    Maybe transformers aren’t the path to AGI, but there’s no reason to think we can’t achieve it in general unless you’re religious.

    They’re not talking about achieving it in general, they only claim that no known techniques can bring it about in the near future, as the AI-hype people claim. Again, they prove this.

    That’s a silly argument. It sets up a strawman and knocks it down. Just because you create a model and prove something in it, doesn’t mean it has any relationship to the real world.

    That’s not what they did. They provided an extremely optimistic scenario in which someone creates an AGI through known methods (e.g. they have a computer with limitless memory, they have infinite and perfect training data, they can sample without any bias, current techniques can eventually create AGI, an AGI would only have to be slightly better than random chance but not perfect, etc…), and then present a computational proof that shows that this is in contradiction with other logical proofs.

    Basically, if you can train an AGI through currently known methods, then you have an algorithm that can solve the Perfect-vs-Chance problem in polynomial time. There’s a technical explanation in the paper that I’m not going to try and rehash since it’s been too long since I worked on computational proofs, but it seems to check out. But this is a contradiction, as we have proof, hard mathematical proof, that such an algorithm cannot exist and must be non-polynomial or NP-Hard. Therefore, AI-learning for an AGI must also be NP-Hard. And because every known AI learning method is tractable, it cannor possibly lead to AGI. It’s not a strawman, it’s a hard proof of why it’s impossible, like proving that pi has infinite decimals or something.

    Ergo, anyone who claims that AGI is around the corner either means “a good AI that can demonstrate some but not all human behaviour” or is bullshitting. We literally could burn up the entire planet for fuel to train an AI and we’d still not end up with an AGI. We need some other breakthrough, e.g. significant advancements in quantum computing perhaps, to even hope at beginning work on an AGI. And again, the authors don’t offer a thought experiment, they provide a computational proof for this.