• 0 Posts
  • 69 Comments
Joined 2 months ago
cake
Cake day: September 13th, 2024

help-circle








  • Don’t see the point of this standard which runs over an inferior type of networking

    Inferior how? Matter is not comparable to Z-Wave. Z-Wave is a mesh network, Matter is just a standard which would allow Alexa, Siri, Google, etc. to control the same devices. To allow Z-Wave like functionality, Matter is able to work on top of Thread, which is in fact superior to Z-Wave.

    is brought to us by the companies that created the interoperability problem in the first place

    Of course. You don’t want to be the company known for refusing to participate in an open standard, even if you secretly don’t want it to succeed. Anyways, there’s no reason for companies to not want an open standard for controlling smart devices, since it literally helps everyone support more devices for basically no effort once you add support for Matter.




  • That’s like saying clock rate and core count are fake terms. Sure, by themselves they might not mean much, but they’re part of a system that directly benefits from them being high.

    The issue with teraflops metric is that it is inversely proportional (almost linearly) to the bit-length of the data, meaning that teraflops@8-bit is about 2x(teraflops@16-bit). So giving teraflops without specifying the bit-length it comes from is almost useless. Although you could make the argument that 8-bit is too low for modern games and 64-bit is too high of a performance trade off for accuracy gain, so you can assume the teraflops from a gaming company are based on 16-bit/32-bit performance.








  • It’s getting there but running a full on PC is such a complex task over micros or special purpose devices.

    Design application ready CPUs are hard, but not really for these companies. The main issue was the need for a standard, given how many optional extensions are available for RISC-V. The RVA profiles fix this problem by giving a set of required extensions to be user-mode application ready, and they have been a thing for a while. However, these were lacking one important capability for modern applications: vector extensions. RISC-V already had SIMD support (similar to what x86 has), but the vector extension is so much better there’s really no need to even bother with it except with some microcontrollers .

    The RVA23 profile, ratified 4 days ago, addresses this by adding the vector extension to the list of required extensions for an application ready CPU. This should be enough for running modern applications, so maybe we’ll see some nice stuff in the next 1-2 years.